Thermal Decomposition Behavior and Non-isothermal Decomposition Reaction of Copper(II) Salt of 4-Hydroxy-3,5-dinitropyridine Oxide and Its Application in Solid Rocket Propellant[†]

CHEN, Pei^a(陈沛) ZHAO, Feng-Qi^{*,a}(赵凤起) LUO, Yang^a(罗阳) HU, Rong-Zu^a(胡荣祖) GAO, Sheng-Li^b(高胜利) ZHENG, Yu-Mei^c(郑玉梅) DENG, Min-Zhi^c(邓敏智) GAO, Yin^a(高茵)

^a Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China

^b Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi an, Shaanxi

710069, China

^c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature-programmed mode have been investigated by means of DSC, TG-DTG and lower rate thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy E_a and pre-exponential factor A of the major exothermic decomposition reaction are $1-\alpha$, 207.98 kJ·mol⁻¹ and $10^{15.64}$ s⁻¹, respectively. The critical temperature of thermal explosion of the compound is 312.87 °C. The kinetic equation of the major exothermic decomposition

process of the title compound at 0.1 MPa could be expressed as: $\frac{d\alpha}{dT} = 10^{16.42} (1-\alpha) e^{-2.502 \times 10^4/T}$. As an

auxiliary catalyst, the title compound can help the main catalyst lead salt of 4-hydroxy-3,5-dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX-CMDB propellant.

Keywords decomposition, copper(II) salt of 4-hydroxy-3,5-dinitropyridine oxide, kinetics, mechanism, application, propellant

Introduction

Copper(II) salt of 4-hydroxy-3,5-dinitropyridine oxide (4HDNPOCu) is an energetic material containing energetic groups of NO₂, which can be used as an energetic auxiliary catalyst substituting the inertia copper salt to improve the catalysis of the main catalyst (lead salt) in Composite Modified Double Base propellant containing RDX (RDX-CMDB propellant).¹ Thermal behavior is one of the most important aspects affecting its catalytic efficiency for propellant. However, its kinetic parameters of thermal decomposition and its application in RDX-CMDB propellant have not yet been reported. In this work, the kinetic parameters and the mechanism of the major exothermic decomposition reaction of 4HDNPOCu were studied by DSC, TG-DTG and lower heat rate/FTIR, and the burning rate of RDX-CMDB propellant containing 4HDNPOCu was measured by the strand burner.² This is quite useful in

the evaluation of its thermal stability under non-isothermal condition, in the study of its thermal changes at high temperature, and in the exploration of its practical application possibilities in RDX-CMDB propellant.

Experimental

4HDNPOCu used in this work was prepared in Shanghai Institute of Organic Chemistry according to Ref. 3. Its purity was more than 99.5%. The sample was kept in a vacuum desiccator before use. Anal. calcd for $C_{10}H_{12}N_6O_{16}Cu$ (4HDNPOCu): C 22.35, N 15.90, Cu 11.95; found C 22.40, N 15.69, Cu 12.07; *m/z*: 528.5; IR (KBr) *v*: 3577, 3428, 3143, 3120, 1665, 1575, 1495, 1460, 1567, 1345, 1260 cm⁻¹. The structural formula is shown in Figure 1.

The DSC data were obtained by a model DSC190S differential scanning calorimeter made in American TA Company. The conditions of DSC were as follows:

* E-mail: npecc@21cn.com

Received December 11, 2003; revised March 16, 2004; accepted April 20, 2004.

Project supported by the National Defense Industry Foundation (No. BZJ030901) and the Science and Technology Foundation of the National Defense Key Laboratory of Propellant and Explosive Combustion of China (No. 51455010). [†]Dedicated to Professor Chengye Yuan on the occasion of his 80th birthday.

Decomposition

sample mass, less than 2.00 mg; heating rate, 2, 5, 10 and 20 $^{\circ}C \cdot min^{-1}$; atmosphere, flowing N₂ gas, 40 mL•min⁻¹; reference sample, aluminum oxide. The TG-DTG curve was obtained using a model TGA2950 thermobalance. The conditions of TG were as follows: sample mass, less than 1.00 mg; heating rate, 10 $^{\circ}C^{\bullet}$ \min^{-1} ; atmosphere, flowing N₂ gas, 60 mL•min⁻¹. The lower rate thermolysis/FTIR spectra of the condensed phase products for 4HDNPOCu were determined using KBr disc $(4000-400 \text{ cm}^{-1})$ on a solid reaction cell of a Nicolet 60SXR FTIR spectrometer. The heating rate is 10 $^{\circ}C \cdot s^{-1}$, 16 scans $\cdot file^{-1}$ and 8.8 files $\cdot s^{-1}$ were recorded at a resolution of 4 cm^{-1} . The remains were measured by a JDX-7S2 model X-diffractometer. The burning rate was measured in strand burner² filled with nitrogen. The sample prepared was the cylinder strand with $\Phi 5 \times 100$ mm, coated by polyvinyl formal.

Figure 1 Structure of 4HDNPOCu.

Results and discussion

Thermal behavior and decomposition mechanism

Typical TG-DTG and DSC curves for 4HDNPOCu are shown in Figures 2 and 3. DSC curve shows an endothermic peak (132.30 $^{\circ}$ C) and three exothermic peaks (252.20, 328.14 and 444.19°C), and correspondingly there are four peaks (118.74, 255.34, 321.88 and 459.60 °C) on DTG curve indicating that the decomposition process of 4HDNPOCu can be divided into four stages. The first stage completes at 146.29 °C accompanying with 13.02% mass loss. It is in agreement with the theoretical value of the mass loss of 13.45%, corresponding to the loss of 4H₂O. The second stage ceases at 267.94 °C accompanied with 8.49% mass loss, which approaches to the theoretical value of the mass loss of 8.59% of one nitryl. The third stage ends at 347.13 °C accompanied with 40.16% mass loss. The fourth stage is over at 533.06 °C with mass loss 15.14%. After the fourth stage the mass of the residue is 23.19% according with the mass summation (23.16%) of Cu + 5C. The result of X-diffraction experiment proves that the major ingredients in the residue are copper and carbon.

In order to further understand the decomposition process of 4HDNPOCu, the lower rate thermolysis/FTIR spectra of the condensed phase products for 4HDNPOCu were conducted with FTIR spectrograph. By the end of the first-stage at about 140 °C, the characteristic absorption peaks for -OH group disappear at 3577 and 3428 cm⁻¹. But characteristic absorption peaks of other groups still exist. With temperature increasing, for the characteristic absorption peak of NO₂ at 1567 cm⁻¹, its intensity decreases and it shifts to

Figure 2 TG-DTG curve for 4HDNPOCu at a heating rate of 10 \degree C •min⁻¹.

Figure 3 DSC curve for 4HDNPOCu at a heating rate of 10 $^{\circ}C^{\bullet}$ min⁻¹.

1592 cm⁻¹ gradually until at about 260 °C. The result indicates that one NO₂ has been broken off from the pyridine ring matrix, which results in the chemical situation of other NO₂ changing in the molecule, as a result, the absorption peak of the band of NO₂ moves in IR spectrum. With temperature increasing further, the band of NO₂ (1592, 1345 cm⁻¹) completely disappears at 310 °C. In 300—350 °C, the characteristic absorption peak for the pyridine ring at 1655 cm⁻¹ diminishes slowly until disappearance, and a new band at 1610 cm⁻¹ appears by degrees, then dies down slowly and disappears at about 500 °C. These results show that these processes occur in sequence: the pyridine ring breaking, new structure forming and then completely decomposing.

On the basis of the above-mentioned experiments and the calculated results, the pyrolysis mechanism for 4HDNPOCu could be shown as follows:

$$\begin{array}{c} 4\text{HDNPOCu} & \frac{4\text{H}_2\text{O}}{50-146.29 \ ^{\circ}\text{C}} & \frac{\text{NO}_2}{200-267.94 \ ^{\circ}\text{C}} \\ \hline \\ \frac{3 \ \text{NO}_2 + \text{other fragment}}{270-347.13 \ ^{\circ}\text{C}} & \frac{\text{hydrocracking}}{350-533.064 \ ^{\circ}\text{C}} & \text{Cu+5C} \end{array}$$

Analysis of kinetic data

In order to obtain the kinetic parameters (apparent activation energy E_a and pre-exponential factor A) of the first and second exothermic decomposition reactions for 4HDNPOCu, a multiple heating method⁴ (Kissinger's method) was employed. From the original data in Table 1, for the first exothermic process, that is, one nitryl being broken off from the pyridine ring, E_k is determined to be 180.74 kJ•mol⁻¹ and A 10^{16.06} s⁻¹. The linear correlation coefficient r_k is 0.9985. The values of E_o and r_o obtained by Ozawa's method⁵ are 188.00 kJ•mol⁻¹ and 0.9938, respectively. The value of E_o approaches the dissociation energy of the C—NO₂ bond (188.3 kJ•mol⁻¹),⁶ further indicating that the breakage of the C—NO₂ bond happens in the second-stage indeed.

For the second exothermic process, E_k is determined to be 205.10 kJ•mol⁻¹ and A 10^{15.89} s⁻¹. The linear correlation coefficient r_k is 0.9996. The values of E_o and r_o obtained by Ozawa's method⁵ are 212.60 kJ•mol⁻¹ and 0.9921, respectively.

For the second exothermic process, that is the major exothermal decomposition process of 4HDNPOCu, the differential Eq. (1) and integral Eq. (2) are cited to obtain the values of E_a , A and the most probable kinetic model function $f(\alpha)$ from a single non-isothermal DSC curve.⁷

$$\ln \frac{d\alpha/dT}{f(\alpha) \left[E_{a} \left(T - T_{0} \right) / RT^{2} + 1 \right]} = \ln \frac{A}{\beta} - \frac{E_{a}}{RT} \quad (1)$$

$$\ln \frac{G(\alpha)}{T - T_0} = \ln \frac{A}{\beta} - \frac{E_a}{RT}$$
(2)

where $f(\alpha)$ and $G(\alpha)$ are the differential and integral

model functions, respectively, T_0 the initial point at which DSC curve deviates from the baseline, R the gas constant, β the heating rate, α the conversion degree (α $=H_t/H_0$), dH_t/dt the exothermic heat flow at time t, H_0 the total heat effect (corresponding to the global area under the DSC curve), H_t the reaction heat at a certain time (corresponding to the partial area under the DSC

curve), *T* the temperature (K) at time *t*, $\frac{d\alpha}{dt} = \frac{1}{H_0\beta} \frac{dH}{dt}$.

Forty-one types of kinetic model functions⁸ and the data in Tables 2-5 are put into Eqs. (1) and (2) for calculation, respectively. The values of E_a , A, linear correlation coefficient r, standard mean square deviation Qand believable factor d (where $d=(1-\alpha)Q$) are obtained by the linear least-squares and iterative methods. The probable kinetic model function of two methods selected by the better values of r, Q and d and satisfying ordinary range of the thermal decomposition kinetic parameters for energetic materials (E=80-250 kJ• mol⁻¹ and log A=7—30, A is in unit of s⁻¹) is G(α)= $-\ln(1-\alpha)$ and $f(\alpha)=1-\alpha$, which indicates that the reaction mechanism of the major exothermic decomposition process of 4HDNPOCu is classified as nucleation and growth, and the mechanism function is the Mample equation with n=1. The values of E_a and A obtaind by Eqs. (1) and (2) are in good agreement with the calculated values by Kissinger and Ozawa's methods. Substituting $f(\alpha)$ with $1-\alpha$, E with 207.98 kJ·mol⁻¹, β with 0.1667 K·s⁻¹ and A with $10^{15.64}$ s⁻¹ in Eq. (3),

$$d\alpha/dT = \frac{A}{\beta} f(\alpha) e^{-E/RT}$$
(3)

we can now establish the kinetic equation of the major exothermic decomposition process of 4HDNPOCu as

follows:
$$\frac{d\alpha}{dT} = 10^{16.42} (1-\alpha) e^{-2.502 \times 10^4/T}$$

 Table 1
 Kinetic parameters of the first and second exothermic decomposition reactions of 4HDNPOCu obtained by the multiple heating method

	β/ (℃•min ⁻¹)	<i>T</i> _e /℃	$E_{o}/$ (kJ•mol ⁻¹)	r _o	$T_{\rm p}/{\rm °C}$	$E_{\rm k}/$ (kJ•mol ⁻¹)	$\log A_k$ $(A_k \text{ in s}^{-1})$	r _k	$E_{\rm o}/$ (kJ•mol ⁻¹)	r _o	
First exother-	2.0	227.17	195.90	0.9889	234.05	180.74	16.06	0.9985	180.10	0.9987	
mic process	5.0	235.07			245.33						
	10.0	240.76			252.20						
	20.0	251.70			261.84						
Mean: $E_0 = (195.90 \pm 180.10)/2 = 188.00 \text{ kJ} \cdot \text{mol}^{-1}$											
Second exother-	2.0	282.51	220.70	0.9845	306.33	205.10	15.89	0.9996	204.50	0.9996	
mic process	5.0	288.67			317.79						
	10.0	300.81			328.14						
	20.0	307.07			337.58						
Mean: $E_0 = (220)^2$	Agap: $F_{-} = (220.7 + 204.5)/2 = 212.60 \text{ kJemol}^{-1}$										

 β , Heating rate; T_e , onset temperature in the DSC curve; T_p , maximum peak temperature; E, apparent activation energy; A, pre-exponential constant; r, linear correlation coefficient; subscript k, data obtained by Kissinger's method; subscript o, data obtained by Ozawa's method.

Decomposition

 Table 2
 Data of 4HDNPOCu determined by DSC^a

$T_i/^{\circ}\mathbb{C}$	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$	<i>T_i</i> /°C	α_i
261	0.0004	0.0104	0.10	304	0.6056
262	0.0012	0.0359	0.34	305	0.6420
263	0.0023	0.0466	0.44	306	0.6800
264	0.0036	0.0757	0.71	307	0.7191
265	0.0054	0.0979	0.92	308	0.7561
266	0.0078	0.1110	1.04	309	0.7909
267	0.0102	0.1713	1.60	310	0.8265
268	0.0134	0.1657	1.55	311	0.8582
269	0.0168	0.1903	1.78	312	0.8866
270	0.0204	0.2289	2.14	313	0.9102
271	0.0247	0.2622	2.45	314	0.9305
272	0.0298	0.3096	2.90	315	0.9477
273	0.0348	0.3447	3.22	${}^{a}T_{o}=532$	$2.15 \text{ K}; H_0 =$
274	0.0408	0.3684	3.45	Та	hle 3 Dat
275	0.0479	0.4242	3.97		
276	0.0544	0.4473	4.18		<i>u_i</i>
277	0.0620	0.4850	4.54	266	0.0003
278	0.0700	0.5419	5.07	267	0.0007
279	0.0787	0.5876	5.50	268	0.0014
280	0.0882	0.6450	6.03	269	0.0023
281	0.0975	0.7051	6.60	270	0.0035
282	0.1081	0.7718	7.22	271	0.0049
283	0.1197	0.8339	7.80	272	0.0067
284	0.1319	0.9026	8.44	273	0.0086
285	0.1454	0.9713	9.09	274	0.0109
286	0.1585	1.0471	9.79	275	0.0135
287	0.1730	1.1293	10.56	276	0.0164
288	0.1885	1.2183	11.40	277	0.0197
289	0.2052	1.3046	12.20	278	0.0234
290	0.2215	1.4091	13.18	279	0.0275
291	0.2396	1.5230	14.25	280	0.0318
292	0.2610	1.6351	15.30	281	0.0365
293	0.2806	1.7585	16.45	282	0.0412
294	0.3031	1.8923	17.70	205	0.0403
295	0.3260	2.0288	18.98	204	0.0520
296	0.3512	2.1983	20.56	203	0.0580
297	0.3785	2.3314	21.81	200	0.0044
298	0.4055	2.4681	23.09	201	0.0715
299	0.4336	2.6677	24.96	200	0.0800
300	0.4644	2.8316	26.49	289	0.08/5
301	0.4988	2.9848	27.92	290	0.0960
302	0.5333	3.1423	29.40	291	0.1053
303	0.5686	3.2727	30.62	292	0.1146

			Continued
$T_i/^{\circ}\mathbb{C}$	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$
304	0.6056	3.3699	31.52
305	0.6420	3.4244	32.03
306	0.6800	3.4201	31.99
307	0.7191	3.3249	31.10
308	0.7561	3.1654	29.61
309	0.7909	2.9468	27.57
310	0.8265	2.5897	24.23
311	0.8582	2.1816	20.41
312	0.8866	1.7269	16.15
313	0.9102	1.2761	11.94
314	0.9305	0.8147	7.62
315	0.9477	0.3494	3.27

 $^{t}T_{0}$ =532.15 K; H_{0} =3206.94 mJ; β =0.0333 K•s⁻¹.

Table 3 Data of 4HDNPOCu determined by DSC^a

<i>T</i> _{<i>i</i>} /°C	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$
266	0.0003	0.0235	0.27
267	0.0007	0.0348	0.41
268	0.0014	0.0556	0.65
269	0.0023	0.0704	0.82
270	0.0035	0.1065	1.25
271	0.0049	0.1233	1.45
272	0.0067	0.1474	1.73
273	0.0086	0.1809	2.12
274	0.0109	0.1990	2.33
275	0.0135	0.2265	2.65
276	0.0164	0.2600	3.05
277	0.0197	0.2841	3.33
278	0.0234	0.3062	3.59
279	0.0275	0.3464	4.06
280	0.0318	0.3678	4.31
281	0.0365	0.3926	4.60
282	0.0412	0.4335	5.08
283	0.0465	0.4616	5.41
284	0.0520	0.4945	5.80
285	0.0580	0.5320	6.24
286	0.0644	0.5688	6.67
287	0.0715	0.6204	7.27
288	0.0800	0.6518	7.64
289	0.0875	0.7060	8.28
290	0.0960	0.7399	8.67
291	0.1053	0.7803	9.15
292	0.1146	0.8402	9.85

able 4 Data of 411DINI OCU determined by DSC	Table 4	Data of 4HDNPOCu	determined by DSC
--	---------	------------------	-------------------

			Continued	Ta	ble 4 Data of 4HDNPOCu determined by DS		
$T_i/^{\circ}\mathbb{C}$	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ}\cdot\mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$	$T_i/^{\circ}\mathbb{C}$	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$
293	0.1245	0.9023	10.58	269	0.0001	0.0367	0.10
294	0.1353	0.9590	11.24	270	0.0003	0.0763	0.20
295	0.1470	1.0205	11.96	271	0.0007	0.1276	0.34
296	0.1597	1.0781	12.64	272	0.0011	0.1796	0.48
297	0.1727	1.1465	13.44	273	0.0017	0.2316	0.62
298	0.1862	1.2043	14.12	273	0.0024	0.2923	0.78
299	0.2012	1.2756	14.95	274	0.0024	0.3664	0.98
300	0.2165	1.3537	15.87	275	0.0032	0.3004	1.25
301	0.2327	1.4252	16.70	270	0.0044	0.4001	1.23
302	0.2504	1.5005	17.59	277	0.0057	0.5664	1.52
303	0.2690	1.5874	18.61	278	0.0074	0.0007	1.//
304	0.2883	1.6764	19.65	279	0.0092	0.7498	2.01
305	0.3089	1.7675	20.72	280	0.0113	0.8316	2.23
306	0.3301	1.8680	21.90	281	0.0136	0.9222	2.47
307	0.3527	1.9642	23.02	282	0.0161	1.0148	2.72
308	0.3762	2.0770	24.35	283	0.0188	1.1081	2.97
309	0.4010	2.1815	25.57	284	0.0219	1.2021	3.22
310	0.4281	2.2626	26.52	285	0.0251	1.2873	3.45
311	0.4563	2.3819	27.92	286	0.0285	1.3756	3.68
312	0.4862	2.4911	29.20	287	0.0322	1.4734	3.95
313	0.5174	2.5755	30.19	288	0.0361	1.5833	4.24
314	0.5449	2.6887	31.52	289	0.0404	1.6991	4.55
315	0.5753	2.7731	32.51	290	0.0449	1.8034	4.83
316	0.6089	2.8442	33.34	291	0.0497	1.9077	5.11
317	0.6439	2.8837	33.80	292	0.0548	2.0238	5.42
318	0.6778	2.9185	34.21	293	0.0602	2.1453	5.75
319	0.7120	2.9252	34.29	294	0.0659	2.2759	6.10
320	0.7447	2.8864	33.83	295	0.0719	2.4106	6.46
321	0.7778	2.7959	32.77	296	0.0783	2 5505	6.83
322	0.8107	2.6458	31.01	290 297	0.0851	2.5565	7 22
323	0.8410	2.4576	28.81	208	0.0022	2.6776	7.63
324	0.8690	2.2298	26.14	290	0.0922	2.0400	7.03 8.06
325	0.8944	1.9698	23.09	299	0.0997	3.0099	8.00
326	0.9162	1.6920	19.83	300	0.1075	3.1788	8.51
327	0.9348	1.4206	16.65	301	0.1159	3.3715	9.03
328	0.9504	1.1546	13.53	302	0.1250	3.6012	9.65
329	0.9629	0.9285	10.88	303	0.1348	3.8467	10.30
330	0.9734	0.7014	8.22	304	0.1454	4.0804	10.93
331	0.9812	0.5521	6.47	305	0.1563	4.2995	11.52
332	0.9872	0.4060	4.76	306	0.1675	4.5094	12.08
333	0.9912	0.3283	3.85	307	0.1790	4.7364	12.69
334	0.9945	0.2318	2.72	308	0.1913	5.0453	13.51
335	0.9970	0.1776	2.08	309	0.2047	5.3977	14.46
336	0.9988	0.1159	1.36	310	0.2192	5.7805	15.48
$I_0 = 537$	$(.15 \text{ K}; H_0 =$	=1023.76 mJ; β =0.08	33 K•S ⁻ .	311	0.2346	6.1607	16.50

Decomposition

Chin. J. Chem., 2004, Vol. 22, No. 9 1061

			Continued	Table 5 Data of 4HDNPOCu determine			nined by DSC ^a	
$T_i/^{\circ}\mathbb{C}$	α_i	$(dH/dt)_i/(mJ \cdot s^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$	$T_i/^{\circ}\mathbb{C}$	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$	
312	0.2510	6.5593	17.57	283	0.0001	0.0143	0.04	
313	0.2684	6.9870	18.71	284	0.0004	0.0343	0.10	
314	0.2866	7.4358	19.92	285	0.0008	0.0642	0.19	
315	0.3060	7.9255	21.23	286	0.0014	0.1010	0.29	
316	0.3267	8.4575	22.65	287	0.0022	0.1372	0.40	
317	0.3489	9.0079	24.13	288	0.0032	0.1810	0.53	
318	0.3724	9.5623	25.61	289	0.0045	0.2294	0.67	
319	0.3975	10.1260	27.12	290	0.0060	0.2794	0.81	
320	0.4240	10.6566	28.54	291	0.0077	0.3364	0.98	
321	0.4518	11.1543	29.88	292	0.0097	0.3986	1 16	
322	0.4806	11.6017	31.08	292	0.0119	0.4670	1.10	
323	0.5104	12.0136	32.18	293	0.0115	0.5321	1.55	
324	0.5414	12.3977	33.21	294	0.0143	0.5321	1.55	
325	0.5735	12.7369	34.12	295	0.0174	0.0033	1.78	
326	0.6068	13.0194	34.87	296	0.0205	0.6800	1.98	
327	0.6408	13.2174	35.40	297	0.0240	0.7649	2.23	
328	0.6755	13.3006	35.63	298	0.0278	0.8513	2.48	
329	0.7108	13.2438	35.47	299	0.0320	0.9495	2.76	
330	0.7460	13.0115	34.85	300	0.0365	1.0479	3.05	
331	0.7806	12.5825	33.70	301	0.0414	1.1384	3.31	
332	0.8147	11.9225	31.93	302	0.0467	1.2426	3.62	
333	0.8470	11.0487	29.59	303	0.0524	1.3542	3.94	
334	0.8771	9.9570	26.67	304	0.0586	1.4637	4.26	
335	0.9039	8.7136	23.34	305	0.0652	1.5885	4.63	
336	0.9270	7.4094	19.85	306	0.0722	1.7165	5.00	
337	0.9462	6.1171	16.38	307	0.0797	1.8617	5.42	
338	0.9615	4.9027	13.13	308	0.0876	2.0016	5.83	
339	0.9735	3.8164	10.22	309	0.0961	2.1482	6.26	
340	0.9825	2.8845	7.73	310	0.1051	2.3079	6.72	
341	0.9889	2.1109	5.65	311	0.1147	2.4861	7.24	
342	0.9934	1.5179	4.07	312	0.1250	2.6696	7.77	
343	0.9964	1.0769	2.88	313	0.1356	2.8577	8.32	
344	0.9983	0.7504	2.01	314	0.1471	3.0695	8.94	
345	0.9994	0.5095	1.36	315	0.1594	3.2820	9.56	
346	0.9998	0.3431	0.92	316	0.1722	3.5117	10.23	
${}^{a}T_{o} = 539$	$0.15 \text{ K}; H_0 =$	=2240.04 mJ; β =0.16	67 K•s ⁻¹ .	317	0.1860	3.7546	10.93	

318

319

320

321

322

323

0.2003

0.2156

0.2317

0.2487

0.2669

0.2861

4.0140

4.2958

4.5895

4.8977

5.2224

5.5584

11.69

12.51

13.36

14.26

15.21

16.19

The corresponding kinetic parameters are summarized in Table 6.

The value T_{po} of the peak temperature T_p corresponding to $\beta \rightarrow 0$ obtained by Eq. (4) taken from Ref. 9 is 299.38 ℃.

$$T_{\rm pi} = T_{\rm po} + b\beta_i + c\beta_i^2, i = 1 - 4$$
 (4)

where b and c are coefficients.

			Continued
$T_i/^{\circ}\mathbb{C}$	α_i	$(dH/dt)_i/(mJ \cdot s^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i \times 10^3/\mathrm{K}^{-1}$
324	0.3065	5.9082	17.20
325	0.3279	6.2679	18.25
326	0.3507	6.6309	19.31
327	0.3745	6.9873	20.35
328	0.3992	7.3371	21.36
329	0.4248	7.6605	22.31
330	0.4518	7.9641	23.19
331	0.4794	8.2347	23.98
332	0.5080	8.4723	24.67
333	0.5372	8.6571	25.21
334	0.5676	8.7891	25.59
335	0.5982	8.8749	25.84
336	0.6294	8.8947	25.90
337	0.6605	8.8617	25.80
338	0.6913	8.7693	25.54
339	0.7221	8.5845	25.00
340	0.7521	8.3007	24.17
341	0.7821	7.9047	23.02
342	0.8105	7.4031	21.56
343	0.8377	6.7998	19.80
344	0.8633	6.1009	17.77
345	0.8867	5.3208	15.49
346	0.9080	4.4898	13.07
347	0.9266	3.6483	10.62
348	0.9428	2.8187	8.21
349	0.9565	2.0241	5.89
350	0.9680	1.2888	3.75
351	0.9776	0.6121	1.78
352	0.9853	0.0146	0.04
000 554	07 17 11	1000 0 0 0 0 0 0 0 0	

 ${}^{a}T_{o} = 554.87 \text{ K}; H_{o} = 1030.26 \text{ mJ}; \beta = 0.3333 \text{ K} \cdot \text{s}^{-1}.$

The critical temperature of thermal explosion $T_{\rm b}$ obtained from Eq. (5) taken from Ref. 9 is 312.87 °C.

 $T_{\rm b} = \frac{E_{\rm o} - \sqrt{E_{\rm o}^2 - 4E_{\rm o}RT_{\rm po}}}{2R}$ (5)

where *R* is the gas constant (8.314 $J \cdot mol^{-1} \cdot K^{-1}$), E_0 is the value of *E* obtained by Ozawa's method.

Burning catalysis in RDX-CMDB propellant

For the sake of the possible application of 4HDNPOCu in propellant as the adjuvant of the burning catalyst (the lead salt), the burning rates u of three systems: minimum smoke propellant of RDX-CMDB (binder/RDX/No. 2 centralite/auxiliary = 66/26/2.0/6(mass percent)) system (I), I/4HDNPOPb (lead salt of 4-hydroxy-3,5-dinitropyridine oxide) = 100/2.5 system (II) and I/4HDNPOPb/4HDNPOCu=100/2.0/0.5 system (III) were measured at different pressure p. The results in Table 7 show that in the help of 4HDNPOCu the catalysis of 4HDNPOPb for the burning rate of propellant is improved. In order to study the effect of 4HDNPOCu on the combustion characteristic of RDX-CMDB propellant, the pressure exponent n of burning rate was calculated, and the mean catalysis efficiency \overline{Z} was compared before and after 4HDNPOCu was added into RDX-CMDB propellant. The experiment data in Table 7, p_i and u_i (i=1-10) were put into Eqs. (6) and (7) respectively

$$u_i = a p_i^n \qquad i = 1 - 10 \tag{6}$$

$$\overline{Z} = \sum_{i=1}^{k} (u_{\text{II (or III)}i} / u_{\text{I}i}) / k$$
(7)

where *a* is the factor.

The values of *u*, *n* and \overline{Z} were obtained: for I, in 2—20 MPa, $u=1.69p^{0.843}$, n=0.843, r=0.996, $\overline{Z}_{2.6}=$ 1, $\overline{Z}_{8-12}=1$, $\overline{Z}_{14-18}=1$; for II, in 10—14 MPa, n=0.563, r=0.9995, $\overline{Z}_{2.6}=1.46$, $\overline{Z}_{8-12}=1.15$, $\overline{Z}_{14-18}=$ 1.07; for III, in 8—16 MPa, n=0.557, r=0.9998, $\overline{Z}_{2.6}=$ =1.53, $\overline{Z}_{8-12}=1.29$, $\overline{Z}_{14-18}=1.15$, which indicate that ,as an auxiliary catalyst, 4HDNPOCu can help the main catalyst 4HDNPOPb to enhance the burning rate and reduce the pressure exponent of RDX-CMDB propellant.

 Table 6
 Calculated values of kinetic parameters of the major exothermal decomposition reaction for 4HDNPOCu

<i>β/</i> °C	$\mathcal{C}(\cdot)$	$(\langle \rangle)$	Eq.	(1)	Eq. (3)					
	$G(\alpha)$	$f(\alpha)$	$E_{\rm a}/(\rm kJ \cdot moL^{-1})$	$\log A$ (A in s ⁻¹)	$E_{\rm a}/({\rm kJ}{\cdot}{\rm moL}^{-1})$	$\log A (A \text{ in s}^{-1})$				
2	$-\ln(1-\alpha)$	$1-\alpha$	219.10 ^{<i>a</i>}	16.54 ^{<i>a</i>}	208.02 ^b	15.71 ^b				
5	$-\ln(1-\alpha)$	$1-\alpha$	198.95 ^c	14.89 ^c	198.70 ^d	14.86 ^d				
10	$-\ln(1-\alpha)$	$1-\alpha$	215.81 ^e	16.39 ^e	209.82^{f}	15.80 ^f				
20	$-\ln(1-\alpha)$	$1-\alpha$	202.39 ^g	14.98 ^g	211.02 ^{<i>h</i>}	15.93 ^h				
	Mean $E_a = 207.98 \text{ kJ} \cdot \text{mol}^{-1}$, $\log A = 15.64$									

 $a^{r} = 0.9746, Q = 5.1433, d = 0.1306; {}^{b}r = 0.9825, Q = 3.1505, d = 0.0550; {}^{c}r = 0.9867, Q = 4.2732, d = 0.0566; {}^{d}r = 0.9864, Q = 4.3726, d = 0.0594; {}^{e}r = 0.9679, Q = 15.9240, d = 0.5117; {}^{f}r = 0.9816, Q = 8.4564, d = 0.1559; {}^{g}r = 0.9163, Q = 26.7304, d = 2.2384; {}^{h}r = 0.9821, Q = 5.5809, d = 0.0970.$

System -		Pressure/MPa								
	2	4	6	8	10	12	14	16	18	20
Ι	3.09	5.34	7.42	9.85	11.88	14.04	15.75	17.54	19.23	20.92
II	5.01	7.95	10.11	11.95	13.79	15.20	16.67	18.87	20.79	22.22
III	4.89	8.25	11.06	13.57	15.50	17.09	18.59	20.00	21.74	23.26

Table 7 The burning rates (mm•s⁻¹) of systems I—III at different pressure

Conclusions

The kinetic parameters of the first and second exothermic decomposition reactions for 4HDNPOCu have been investigated. The possible mechanism of the decomposition reaction is proposed. The kinetic model function in differential form, apparent activation energy E_a and pre-exponential factor A of the major exothermic reaction are $1-\alpha$, 207.98 kJ•mol⁻¹ and $10^{15.64}$ s⁻¹, respectively. The critical temperature of thermal explosion of the compound is 312.87 °C. As an auxiliary catalyst, 4HDNPOCu can help the main catalyst 4HDNPOPb to enhance the burning rate and reduce the pressure exponent of RDX-CMDB propellant.

References

1 Zhao, F.-Q.; Chen, P.; Luo, Y. J. Explosives & Propellants

2003, 26(3), 1 (in Chinese).

- 2 Yu, E. S.; Wang, B. L.; Wang, G. T. *The National Military Standards of China*, GJB770A-97706.1, Burning Rate Test Method, **1997** (in Chinese).
- 3 Bailey, A. S.; Heaton, M. W. J. Chem. Soc. 1971, 1211.
- 4 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
- 5 Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881.
- 6 Yang, D. S. Mechanism of the Initial Stage of the Thermal Decomposition of Some Cyclourea Nitramines with N-Trinitroethyl Groups, Xi'an Modern Chemistry Research Institute, Xi'an, **1987** (in Chinese).
- 7 Hu, R. Z.; Yang, Z. Q.; Liang, Y. J. Thermochim. Acta 1988, 123, 135.
- 8 Hu, R. Z.; Shi, Q. Z. *Thermal Analysis Kinetics*, Science Press, Beijing, **2001**, p. 67 (in Chinese).
- 9 Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. Thermochim. Acta 1994, 244, 171.

(E0312116 ZHAO, X. J.)